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Abstract

In order to analyze the evolution of the concentration profile experimentally observed by MacDonald and Muller under shear-induced
polymer migration in a rotating cone-and-plate device, we use a constitutive equation for the diffusion flux, where the gradient of a
generalized non-equilibrium chemical potential appears instead of the concentration gradient. From this model of coupling between diffusion
and viscous pressure, together with the mass balance equation, we derive some general features of the concentration profile, the temporal
behavior of the polymer concentration near the apex of the cone and some relevant trends of the dynamical process of polymer migration.
q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In 1996, MacDonald and Muller [1] studied experimen-
tally the shear-induced separation in a polymer solution in a
rotating cone-and-plate configuration. They submitted some
solutions of polystyrene of high molecular mass in oligo-
meric polystyrene to constant shear. The solutions were
initially homogeneous, but, under the action of shear, the
long polystyrene macromolecules were found to accumulate
near the apex of the cone, thus exhibiting a coupling
between viscous pressure and diffusion. Their main result
was that the predictions of the constitutive equation for the
flux of polymerJ2

J2 � 2D7n 2
D

RT
7·Pv �1�

with n the number of moles per unit volume,D the diffusion
coefficient andPv the viscous pressure tensor, yields for the
rate of the mentioned separation process results that are two
orders of magnitude lower than the experimental observa-
tions. This dramatic discrepancy makes their paper very
interesting, as it is a challenge of our understanding of the

couplings between diffusion and viscous pressure, a topic of
much practical and theoretical interest [2–7], and which in
Eq. (1) is described by the last term of the right-hand side.

In a recent paper [8], we showed that a drastic improve-
ment of the results may be achieved when one uses instead
of Eq. (1) a constitutive equation of the form

J2 � 2 ~D7m2 2
D

RT
7·Pv �2�

wherem2 is the non-equilibrium chemical potential of the
solute that depends in principle on non-equilibrium vari-
ables as for instance the viscous pressure itself in extended
irreversible thermodynamics [9–15], or on the configuration
tensor in other approaches. The coefficient~D is related to the
classical diffusion coefficientD by D � ~D�2m�eq�

2 =2n�; where
m�eq�

2 is the local-equilibrium chemical potential of the
solute. We will follow here, as in our previous paper [8],
the thermodynamic framework of extended irreversible
thermodynamics [9–15] because in this theory the non-
equilibrium chemical potential depends directly onPv and
therefore the coupling between diffusion and viscous pres-
sure through the first term on the right-hand side of Eq. (2) is
described in the most direct way. Other theories, instead,
[2–7] focus their interest on the purely dynamical coupling
expressed by the second term of Eqs. (1) or (2) and pay little
or no attention at all to the thermodynamic coupling coming
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from the non-equilibrium chemical potential. Indeed, when
the gradient ofm2 is expressed in terms of the concentration
gradient, the first term of Eq. (2) yields an effective diffusion
coefficient introduced by comparing Eqs. (1) and (2)

Deff � ~D�2m=2n� � DC�n; _g� �3�
where the functionC is defined as

C�n; _g� � �2m=2n�
�2meq=2n� �4�

depending on the concentration and the shear rate_g :
In the conditions of the experiment by MacDonald and

Muller [1] Deff seems to be negative and two orders of
magnitude higher than the classical diffusion coefficient
[8], in qualitative agreement with the experimental conclu-
sions. This improvement of the results makes it worth care-
fully considering the model [9–16] based on Eq. (2).

In Ref. [8] we showed that the sign and orders of magni-
tude of the effective diffusion coefficient obtained from Eq.
(2) were consistent with experimental data, but we did not
study the predictions of Eq. (2) on the evolution of the
concentration profile. This analysis is the main original
aim of the present paper. Another original aspect is that,
in difference with Ref. [8], where we considered a solution
of polystyrene intrans-decalin, here we consider the same
solution studied by MacDonald and Muller, for which we
lacked some data when Ref. [8] was written.

To study the evolution of the concentration profile, we
undertake a simple mathematical analysis of some relevant
features of the dynamical process of migration, in particular,
the evolution of the polymer concentration near the apex of
the cone, and the difference of concentration near the apex
of the cone and near the edge of the system.

The plan of the paper is as follows. In Section 2 we
discuss the general details of the model being used in this
paper. In Section 3 we apply it to the system considered by
MacDonald and Muller and derive some general features of
the behavior of the concentration near the apex of the cone.
Section 4 is devoted to the analysis of the concentration
profile and of the behavior of the evolution of the concen-
tration near the apex. Finally, we discuss the main results.

2. Basic features of the model

The essential difference between the transport Eqs. (1)
and (2) is that in the first term of the latter the gradient of
the chemical potential appears, whereas in the first term of
the former there is the solute concentration. In extended
irreversible thermodynamics, the chemical potential of a
fluid under flow may depend not only on temperature, pres-
sure and concentration, but also on the viscous pressure
tensor (and maybe on other fluxes, as the heat flux and the
diffusion flux). Therefore, the first term in Eq. (2) provides a
coupling between diffusion and viscous pressure in addition

to the more well-known coupling provided by the second
term in Eqs. (1) and (2).

The form ofC follows from the first equality in Eq. (3)
and from the relation mentioned above ~D �
D�2m �eq�

2 =2n�21
: In our paper [8] we used for the equilibrium

chemical potential of the polymer solutions under study, the
expression from the classical Flory–Huggins model. The
non-equilibrium chemical potential was obtained by differ-
entiation of the Gibbs free energy expression in extended
irreversible thermodynamics [6,16–18], namely

G�T;p;n1;n2;P
v� � Geq�T;p;n1;n2�1

JV
4T

Pv : Pv �5�

whereV is the volume of the system,ni the number of moles
of the componenti andJ the steady-state compliance�J �
t =h; with h the shear viscosity andt the relaxation time of
the viscous pressure tensor). The chemical potential of
speciesi is obtained fromG by differentiation as

mi � 2G
2ni

� �
T;p;Pv

�6�

To evaluate explicitly the non-equilibrium contribution to
Eqs. (5) and (6) we use forJ the formula following from the
Rouse–Zimm model, namely

J � CM2

cRT
1 2

h1

h

� �2

�7�

whereC is the Rouse constant�C � 0:4�; M2 the molecular
mass of the solute,h1 the viscosity of the solvent, andc the
polymer concentration expressed in mass of solute by unit
volume. The Rouse–Zimm model is also used in Ref. [1],
because the polymer concentrations used in the experiment
are low, in such a way that the volume fraction occupied by
the polymer is of the order of 1027 and the entanglements
are very unlikely.

In order to get a functional relation between viscosity and
concentration, we take a linear approach to the usual Martin
equation

h

hs
� 1 1 �h�c 1 k�h�2c2 �8�

k being the Huggins constant and [h ] the intrinsic viscosity.
The expression for the non-equilibrium contribution to

the chemical potential of the solute is thus [8,18]

m�ne�
2

RT
� Cv1M2�h�

4R2T2 Pv

: Pv M2�h�
v1

F � ~c�
~c

1 2
M2�h�
~cv1

2 m
� �

P5 ~c
P6 ~c

� �
�9�

wherem is the ratio between the molar volumes of the solute
and the solvent,v1 the molar volume of the solvent,~c the
reduced concentration defined by~c� �h�c (note that ~c is
related ton by means of~c� �h�nM2� andF � ~c�; P5� ~c� and
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P6� ~c� the auxiliary functions defined as [8,17,18]

F � ~c� � ~c
1 1 k~c

1 1 ~c 1 k~c2

� �2

�10�

P5� ~c� � �k 2 1� ~c2 1 �k2 2 3k� ~c3 2 3k2 ~c4 2 k3 ~c5
;

P6� ~c� � �1 1 ~c 1 k~c2�3
�11�

When a cone-and-plate experiment is considered [1], we
can write the expressions

Pv : Pv � �Pv
ff�2 1 2�Pv

fu�2 � J� _g� ~c2 �12�
wheref andu refer to the axial and azimuthal directions,
respectively, andJ is given by

J� _g� � RT
M2�h�

� � 2

�4�t _g�4 1 2�t _g�2� �13�

When Eqs. (12) and (13) are introduced in Eq. (9) the
explicit expression for the derivative�2m�ne�

2 =2 ~c� is given by

2m�ne�
2

2 ~c
� Cv1M2�h�

2RT
J� _g�

(
M2�h�

v1
F � ~c�

1

"
M2�h�

v1
2 m~c

#"
2

P5� ~c�
P6� ~c� 1 ~c

d
d~c

 
P5� ~c�
P6� ~c�

!#)
�14�

The analysis of a specific system requires to introduce into
Eq. (14) the numerical values for the material coefficients.

3. Application to the system studied by MacDonald and
Muller

In the migration experiment carried out by MacDonald
and Muller [1] the polymer solution confined in the cone-
and-plate shear device has a homogeneous concentration� ~c0

when it is expressed as a reduced one) before the system is
sheared. As a consequence of coupling between diffusion
and viscous pressure, a dependence of concentration on time
and radial position is observed after the cone begins to
rotate, yielding a concentration profile~c�r ; t�: This radial
migration has two contributions: one of them is due to the
second term in Eq. (2); this is the only contribution consid-
ered by MacDonald and Muller and yields a rather low
separation. The second contribution, not considered in
Ref. [1], is due to the dependence ofm on the viscous
pressure, which makes possible thatDeff is negative and

takes absolute values much higher than the classical diffu-
sionD for concentration higher than a critical value~cc: This
additional contribution favors separation and accelerates the
migration process very much. Since we are interested in the
dynamical aspects of the migration process, we must look
for the concentration range whereC , 0:

In Ref. [1] three solutions of polystyrene of high mole-
cular mass solved in an oligomeric polystyrene of molecular
mass 0.5 kg mol21 and viscosity 80 Pa s were considered.
Using the density of a polystyrene chain with 5000 segments
reported by Wolf [19], the molar volume of a monomer unit
can be estimated as 9:7 × 105 m3 mol21

; in such a way that
the molar volume of the oligomeric solventv1 is equal to
4:66× 104 m3 mol21

: Other properties of the solutions
studied in Ref. [1] are collected in Table 1. It must be also
noted that the relaxation times reported by MacDonald and
Muller [1] were calculated from the Rouse model and this
fact allows us to calculate the intrinsic viscosity values
given in Table 1 and whose dependence on the molecular
mass of the solute follows the expression

�h� � 2:25× 1023M 0:524
2 �15�

Concerning the Huggins constantk to be used in Eq. (8),
the best value is obtained by fitting the experimental data of
Table 1; this yields the result

k � 497:9M20:49
2 �16�

Whereas concentration in Ref. [1] is given by the weight
fraction, in Table 1 the concentration is expressed by the
mass of solute by unit volumec. In order to relatec with the
weight fraction defined in the usual form

w2 � n2M2

n1M1 1 n2M2
�17�

where the subindices 1 and 2 correspond to the solvent and
polymer, respectively, we will use the expression

c� M1

v1
w2 ù

M0

v0
w2 �18�

M0 and v0 are the molecular mass and molar volume of a
segment of polystyrene, and it is assumed thatM2 � mM1

and v2 � mv1; wherem may be calculated from the poly-
merization index of the solute.

Using the latter information, the numerical values of the
chemical potential and its derivatives can be calculated for
the system polystyrene solved in oligomeric polystyrene,
and we obtain the results shown in Figs. 1 and 2 for the
solution whose solvent has a molecular mass 2000 kg mol21

(the system so called 2M in Ref. [1]). In Fig. 2 can be
observed a critical concentration~cc for which the derivative
of the non-equilibrium contribution to chemical potential is
equal to zero for any shear rate considered. This concentra-
tion is the one corresponding to the maximum of the chemi-
cal potential in Fig. 1. When the calculations are carried out
for several values of the polymer molecular mass, it is possi-
ble to reach the following fit~cc � 0:00545M0:199

: Note that
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Table 1
Physical properties of the solutions considered in the experiments in Ref.
[1]

M2

(kg mol21)
Concentration
(kg m23)

Viscosity of the
solution (Pa s)

Intrinsic viscosity
(m3 kg21)

2000 2.14 165 0.122
4000 1.28 136 0.171
6850 0.963 120 0.233



for the case 2M of Ref. [1] the initial value of the reduced
concentration is 0.26, slightly above the critical value of the
reduced concentration, which is 0.25. For values of~c higher
than this critical value,Deff defined in Eq. (3) is negative,
and this enhances the separation process very much. In Ref.
[8] we showed that the order of magnitude of this enhance-
ment is compatible with the experimental results in Ref. [1].

It is interesting to remark that for increasing values of the

shear rate, Fig. 1 is scaled vertically, i.e. the concentration
corresponding to the maximum in Fig. 1 remains practically
constant. This behavior is also seen in Fig. 2; this is due to
the fact that the non-equilibrium contribution to the chemi-
cal potential is much higher and much more sensitive to
concentration than the local-equilibrium chemical potential.

In this paper we want to analyze in more detail some
features of the results in Ref. [1]. To do that we will use
Eq. (1), with the effective diffusion coefficient (Eq. (3))
instead ofD, together with the mass balance equation to
obtain the differential equation from which the shape of
the concentration profile can be predicted

2 ~c
2t
� D

2C

2 ~c
2 ~c
2r

� � 2

1C
2 2 ~c

2r2 1 �2C 1 b� 1
r
2 ~c
2r

" #
�19�

where the new variableb is defined asb � 2�t _g� 2:
We assume for the solution of the latter equation a series

expansion of the form

~c�r ; t� �
X
j�0

aj�t�r j �20�

Since at the beginning of the experiment�t � 0� the concen-
tration of the system is uniform, the following identifica-
tions can be established

a0�0� � ~c0 aj�0� � 0 � j . 0�: �21�
while the concentration at the positionr � 0 is given at any
time by

~c�0; t� � a0�t� �22�
After the results presented in Ref. [1] for the system 2M,

it is possible to build Fig. 3 where the numerical values of
a0�t� and its derivative are plotted as functions of time. From
the plot ofa0�t� we verify the existence of two values of the
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Fig. 2. The dependence ofC with respect to the composition of the system
2M in Ref. [1] Each curve corresponds to the value of_g (in s21) which is
indicated besides it. According to Eq. (3),~cc corresponds to a situation in
which the effective diffusion coefficientDeff in Eq. (3) vanishes. Therefore,
for ~c . ~cc the separation process is enhanced. Note that the same argument
presented in Fig. 1 leads us to identify~cc with the abscissa of the maxima of
Fig. 1.

Fig. 3. The circles represent experimental values of the reduced con-
centration near the apex of the cone~c�0; t� � a0; measured in Ref. [1] for
the system 2M submitted to a shear rate_g � 2 s21

: The upper curve
corresponds to a fit of such data, and the lower one to the corresponding
derivative.

Fig. 1. The chemical potential of the solute for the system 2M of Ref. [1]
obtained as the sum of the Flory–Huggins contribution and a non-equili-
brium term (Eq. (9)). Each curve corresponds to the value of_g (in s21)
which is indicated besides it; it is convenient to note that for the value of_g
considered in this paper, the non-equilibrium contribution is more impor-
tant than the Flory–Huggins one, and therefore, in agreement with Eq. (9),
each value of_g is equivalent to introduce a vertical scale factor in the
ordinate of the curves, without modifying their abscissa.



time for which the value of the derivative is zero: one of
them corresponds to the beginning of the experiment and the
other one is associated with a maximum fora0�t� at timet .
0: Note that the presence of this maximum prevents any
monotone increase of concentration in the cone apex with
the time. The presence of a maximum in the concentration
near the apex agrees with the experimental findings of Ref.
[1].

Taking into account Eqs. (20) and (21) it is easy to show
the existence of the zero value for the derivative att � 0: To
prove the existence of the maximum we begin with the
introduction in Eq. (19) of the auxiliary functionY defined
by

Y�r ; t�
C

� 2 ~c
2r

�23�

which allows us to write

2 ~c
2t
� D

2Y
2 ~c

1 2
1
r

Y 1 b
1
r

Y
C

� �
�24�

Writing for Y, a series expansion as that previously intro-
duced in Eq. (20)

Y�r ; t� �
X
j�0

Yj�t�r j �25�

its substitution in Eq. (19) lets us write the recurrence
relations

0� 2Y0�t�1 ba1�t�
daj =dt � D�� j 1 3�Yj11�t�1 � j 1 2�baj12�t�� � j � 0; 1;…�

(
�26�

When Eq. (23) is written forr � 0 and Eqs. (20), (25) and
the first equation of the system (26) are taken into account,

we get as a conclusion thatC0 � 2b=2; whereC0 stands
for C0 � C�a0; _g�: Since for a given shear rateC0 only
depends on the concentrationa0, it is inferred that for a
given shear rate the concentration in the apex of the cone,
i.e a0, would not depend on time, in contradiction with the
experimental results of MacDonald and Muller (see their
Fig. 7). In order to avoid this contradiction, while keeping
the validity of Eq. (26), it must be proposed thata1�t� and
Y0�t� are equal to zero for any time considered. If the deri-
vative with respect tor is carried out in Eq. (20) and it is
taken into account thata1 � 0; we get the result

2 ~c
2r

� �
r�0
� 0 ;t �27�

The differential Eq. (24) can be also particularized forr �
0; where it leads to the ordinary differential equation

da0

dt
� D�3C0 1 b� 2 2 ~c

2r2

 !
r�0

�28�

where the L’Hospital rule has been applied keeping in mind,
as an additional hypothesis, than the second derivative of
concentration with respect to position is a finite non-zero
function. From Eq. (28) it is obvious that the maximum
concentration corresponds to the valuea0 satisfying the
equation 3C�a0; _g�1 b � 0 which can be solved if an
explicit expression for the chemical potential and its deri-
vative are known.

When the system 2M is submitted to a shear rate_g �
2 s21 andt is calculated from the value of intrinsic viscos-
ity reported in Table 1 using the Rouse model, we getb=3�
48: In Fig. 4 the values ofC � 2b=3� 248 are repre-
sented by a dotted line, in such a way that the concentrations
a0 for which the derivative da0=dt vanishes are 0.304 and
0.873. We see, therefore that there appear two different
values instead of the only experimental valuea0 � 0:55
observed in Fig. 3. A possible way to overcome this problem
could be to adjust some parameter of the model (for
instance, the Huggins constant) in such a way that the dotted
line in Fig. 4 intersects this curve in the minimum.

4. On the concentration profile

From what we have said above, it is possible to obtain
several conditions which must be verified by the concentra-
tion profiles reported in Ref. [1], namely

2 ~c
2r

� �
r�0
� 0 ;t �29�

~c�0; t� � a0�t� ;t ~c�r ;0� � ~c0 ;r �30�

2 2 ~c

2r2

 !
r�0

± 0 �31�

As a consequence, the concentration profile must show a
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Fig. 4. The continuous curve corresponds toC obtained for the system 2M
of Ref. [1] at _g � 2 s21. The discontinuous line corresponds toC � 2b=3:
Its intersection with the former curve corresponds to the values of abscissa
0.304 and 0.873 which, according to Eq. (28), correspond to the values ofa0

for which da0=dt vanishes.



functional structure of the form

~c�r ; t� � a0�t�1 a1�t�rnZ�r ; t� �32�

in such a way that by calculation of its first two derivatives
with respect to the radius, and by taking into account condi-
tions (29) and (30) it may be concluded that the parametern
must be equal or higher than 2. If we focus our attention on
the concentration profiles measured by MacDonald and
Muller (see their Figs. 7 and 8) we may introduce the new
variable

D ~c�r ; t� � ~c�r ; t�2 ~c�0; t� �33�

which satisfies the condition

lim
r!∞

D ~c�r ; t� � j�t� �34�

The experimental information about~c�r ; t�; ~c�0; t� and
~c�R; t� is summarized in Figs. 5 and 6.

One of the possible options in order that Eqs. (32) and
(34) are compatible, is that the functionZ�r ; t� in Eq. (32) is
the inverse of a polynomial of second degree inr, in such a
way that the concentration profile follows a functional
expression of the form

~c�r ; t� � a0�t�1 a1�t� r 2

b0�t�1 b1�t�r 1 b2�t�r2 �35�

which for the sake of simplicity may be written in the less
general, but simpler form

~c�r ; t� � a0�t�1
a�t�r2

1 1 b2�t�r2 : �36�

5. Analysis of the concentration at the apex as a function
of time

When Eq. (36) is substituted into Eq. (28) one gets the
new differential equation

da0

dt
� 2D�3C0 1 b�a �37�

The fact thata0 as well as da0=dt are functions of time,
may be given a geometric interpretation by considering that
we have the parametric equations of a curve in a Cartesian
coordinate system of coordinates given bya0 and da0=dt:
Therefore, if one uses the curves of Fig. 3 to find the values
of a0 and da0=dt at any value oft, it is possible to plot Fig. 7,
which visualizes the interval of values ofa0 for which da0=dt
is a univocal function ofa0 and, recalling thatC0 �
C�a0; _g�; it is inferred from Eq. (37) that for this interval
of concentration there must exist a functional relation of the
kind a�a0�: This result allows us to go from the differential
Eq. (37) to the following integral:

1
2D

Za0

ap
0

dx
�3C�x�1 b�a�x� � t 2 t p �38�

where the superindexp refers to the point in the concentra-
tion–time plane for which the solution passes.

5.1. Additional hypothesis for the evaluation of the
concentration profile

The first difficulty found in the integration of Eq. (38) is
that we ignore the explicit dependencea�a0�, and therefore,
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Fig. 5. The up triangles indicate the experimental values of the concentra-
tion near the apex of the cone for the system 2M of Ref. [1] submitted to a
shear rate_g � 2 s21 for different values of time. The down triangles repre-
sent the concentration near the edge of the cylinder. The curves are the
corresponding fits to each set of values of concentration.

Fig. 6. Representation of the values ofD ~c�R; t� at a given time as a function
of a0 at the same instant of time. The circles correspond to the experimental
values measured in Ref. [1] for the system 2M submitted to_g � 2 s21

; the
triangles to the values obtained at_g � 3 s21 and the square corresponds to
_g � 1:2 s21

: The continuous line is the fit corresponding to the values with
_g � 2 s21

: The dashed curve has been calculated in a theoretical way,
assuming hypothesis (39).



it is necessary to look for new hypotheses that allow us to
determine such a functional dependence.

If the experimental values ofD ~c�R; t� are plotted as a
function of the concentration in the apex of the conea0�t�;
a practically linear relation is obtained, which is shown in
Fig. 6. It is rather remarkable that this line is practically
independent of the value of the shear rate, at least in the
range of values of shear rate considered in Ref. [1].

On the other side, if the experimental values of the
concentration at the edge of the cylinder~c�R; t� for different
values of time are represented on the curvem� ~c�; derived
theoretically from our model (using Eq. (9) and the Flory–
Huggins theory), and the experimental values of~c�0; t� are
plotted on the same horizontal, Fig. 8 is obtained. The obser-
vations in Fig. 8 may be roughly justified by introducing the
hypothesis

m� ~c�0; t�� � m� ~c�∞; t�� �39�
This would be exact in equilibrium, but is only approx-
imate for non-equilibrium steady states. The first restric-
tion of this approximation is the fact that its range of
validity is necessarily less than the value of the concen-
tration for which the curvem� ~c� and the dotted curve
represented in Fig. 8 intersect each other. This implies
that the maximum value of the reduced concentration that
we may safely consider in the present range of approxi-
mations is approximately 0.43 (this value will be denoted
~clim�; in contrast with the maximum value 0.55 derived from
Fig. 3.

It is convenient to mention that when the shear rate
increases, the equilibrium contribution to the chemical
potential becomes less and less important, in such a way
that an increase of_g only implies a multiplicative vertical
scale factorm� ~c� (see Fig. 1). Therefore, if the bold
hypothesis (39) is accepted, it follows that the values of

D ~c�R; t� in Fig. 6, obtained theoretically from it (dis-
continuous line) will be practically unaffected by the shear
rate. This is experimentally confirmed in the range of values
of _g between 2 and 3 s21 that we have considered in this
paper.

5.2. Some calculation details

The main steps we propose in order to determine a
concentration profile are the following ones:

(i) Given a value ofa0 we determine which value of the
concentration satisfies the condition (39). In this way, we
obtain the theoretical value forD ~c which is represented
by the discontinuous line in Fig. 6.
(ii) From Eq. (36) it is possible to writeb2 � a=D ~c∞; in
such a way that only an unknown parameter appears in
the equation for the concentration profile (Eq. (36)).
(iii) We carry out a material balance along the radial
coordinate. To do that we decompose the volumeV in a
series ofN volume elementsVi and we apply the condi-
tion of mass conservation expressed as

XN
i�1

~ciVi � ~c0V �40�

This constitutes a functional relation of the form
f �a0;a� � 0, which defines the functiona � a�a0�: The
algorithm we have just described yields the concentration
profile shown in Fig. 9. Note that the solution of the
differential Eq. (37) through the point�tp

; ap
0� can be

obtained accomplishing a numerical integration of Eq.
(38), assuming that the value of the coefficientD is
known.
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Fig. 8. The curve corresponds to the chemical potential used in this paper
for the system 2M of Ref. [1]. The symbols correspond to the experimental
values of Ref. [1] for several values of_g and time. The dots corresponding
to ~c�R; t� have been drawn on the curve, and the corresponding values for
~c�0; t� have been represented on the horizontal line, which crosses its homo-
logous point~c�R; t�:

Fig. 7. When the parametert is eliminated from the two curves of Fig. 3,
there exists a range of values ofa0 for which it is possible to express da0=dt
as a function of concentrationa0.



6. Concluding remarks

We have studied several general features of the shear-
induced polymer separation in a cone-and-plate situation
considered experimentally in Ref. [1]. As shown in Ref.
[1], the transport Eq. (1) is not satisfactory, because it
gives a separation too slow. In contrast, it was seen in
Ref. [8] that the use of the generalized chemical potential
of EIT in Eq. (2) yields a much faster separation, because
the effective diffusion coefficient becomes negative for
concentrations higher than a critical one.

In Ref. [8], our attention was focused on the effective
diffusion coefficient. Here, we take a more detailed dyna-
mical analysis, by assuming a series expansion for the
concentration profile.

The most interesting results are, in our opinion, the
following ones:

(a) The nonmonotonic temporal behavior of the polymer
concentration near the apex of the cone, which exhibits an
overshoot behavior, which reaches a maximum higher
than the final steady value; this is observed experimen-
tally and follows from the consistency arguments here.
Analogously, the concentration near the edge of the cylin-
der exhibits a negative overshoot, i.e. it reaches a mini-
mum lower than the final steady concentration.
(b) For the range of values of the dimensionless shear rate

studied here, the difference of concentrations near the
apex and near the edge of the cone as a function of the
latter concentration is practically linear (see Fig. 6) and
this line is practically independent of the shear rate.

It could also be argued whether anisotropic effects could
be sufficiently well described by the form Eq. (5) of the
Gibbs free energy. In Ref. [20] we have considered the
influence of anisotropy terms in Gibbs free energy, as
described by the higher-order coupling of the formJ·Pv·J;
on the spinodal line of solutions under shear; the influence
of such terms turned out to be of the order of 5% of the
influence of the second-order termsPv : Pv

; and therefore,
we do not consider them here. A different, and open topic is
the possible anisotropy in the diffusion tensor, which is
beyond the purely thermodynamic analysis.

Acknowledgements

This work has been partially supported by the Direccio´n
General de Asuntos del Personal Acade´mico of UNAM,
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Fig. 9. The concentration profile calculated by following the algorithm
presented in Section 5.2 of this paper when the valuea0 � 0:43 is assumed.
The experimental values correspond to the system 2M of Ref. [1] submitted
to a shear rate_g � 2 s21 during 1000 h.


